Functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Computer
Organization and Architecture - Von Neumann

Data representation: signed number representation, fixed and floating point Representations,
Character representation. Computer arithmetic — integer addition and Subtraction, Ripple carry adder,
carry look-ahead adder, etc. Multiplication — shift-and add, Booth multiplier, Carry save multiplier,
etc. Division restoring and non-restoring techniques, Floating point arithmetic

Functional Units
A computer consists of five functionally independent main parts: input, me
output, and control units, as shown in Figure 1.1.

Memory

Arithmetic
and
logic

Interconnection
network

Cutput

10 Processor

Figure 1.1 Basic functional units of @ computer.

o \\‘\&wﬁ“

The input unit accepts co@d 1n %‘%om human operators using devices such as keyboards, or
from other computers overggital commu@ncatlon lines. The information received is stored in the
computer’s memory, eithefy ter ﬁ% or to be processed immediately by the arithmetic and logic unit.
The processing s re quglﬁ ¥y a program that is also stored in the memory. Finally, the results are
sent back to the (%%Whmugh the output unit. All of these actions are coordinated by the control
unit. An interconnectitg) netwdrk provides the means for the functional units to exchange information
and coordi their aCt‘B‘ﬂS‘ The arithmetic and logic circuits, in conjunction with the main control
circuits, IS%ZMW Input and output equipment is often collectively referred to as the input-output
(I/0) unit. ‘&g” ¥

A program is a?ﬁt of instructions which performs a task. Programs are stored in the memory. The
processor fetches the program instructions from the memory, one after another, and performs the desired
operations. The computer is controlled by the stored program, except for possible external interruption
by an operator or by I/O devices connected to it. Data are numbers and characters that are used as
operands by the instructions. Data are also stored in the memory. The instructions and data handled by a
computer must be encoded in a suitable format. Each instruction, number, or character is encoded as a
string of binary digits called bits, each having one of two possible values, 0 or 1, represented by the two
stable states.

Input Unit

Computers accept coded information through input units. The most common input device is the
keyboard. Whenever a key is pressed, the corresponding letter or digit is automatically translated into its
corresponding binary code and transmitted to the processor.

Many other kinds of input devices for human-computer interaction are available, including the touchpad,
mouse, joystick, and trackball. These are often used as graphic input devices in conjunction with
displays.

Microphones can be used to capture audio input which is then sampled and converted into digital codes
for storage and processing.

Similarly, cameras can be used to capture video input.

Digital communication facilities, such as the Internet, can also provide input to a computer from other
computers and database servers.

Memory Unit S

The function of the memory unit is to store programs and data. There are t\&,o clgﬁes of st

primary and secondary.

Primary Memory N \

Primary memory, also called main memory, is a fast memory that 0pe~1S at ele %ﬁlc speeds.
Programs must be stored in this memory while they are being ifcuted emory consists of a large
number of semiconductor storage cells, each capable of storlng iblt of in L fmation. These cells are

rarely read or written individually. W

Instead, they are handled in groups of fixed size called words. The m@@ory is organized so that one
word can be stored or retrieved in one basic operatw‘ﬁ‘\The nu,g@oer of'bits in each word is referred to as
the word length of the computer, typically 16, 3& or 64{@}6 S

To provide easy access to any word in the mem?ﬁﬁ@,a‘“db stinc address is associated with each word

location. Addresses are consecutive numpw‘startﬁ rom Q that identify successive locations.

Instructions and data can be written intgfor read from emory under the control of the processor. A
memory in which any location can be a@cessed in a $hott and fixed amount of time after specifying its
address is called a random- access gem (RAM):zx}The time required to access one word is called the
memory access time. This tlmQﬁs indepentidigsgfithe location of the word being accessed. It typically
ranges from a few nanosecgnqut 100 ns for current RAM units

@Xx M’
Cache Memory T
As an adjunct to the mam Sie \§ a‘§ aller, faster RAM unit, called a cache, is used to hold sections of
a program that ingxecuted, along with any associated data. The cache is tightly coupled
with the processor arigl 1S ly contained on the same integrated-circuit chip. The purpose of the cache
is to facilit {e hlgh 1nst%§y{:t10n execution rates.
At the sta ¥ am e>§ecut10n the cache is empty. As execution proceeds, instructions are fetched
into the pro ssgf and a copy of each is placed in the cache. When the execution of an instruction
requires data‘\ ocated in the main memory, the data are fetched and copies are also placed in the cache.
If these instruciigns are available in the cache, they can be fetched quickly during the period of repeated
use. #

Secondary Storage

Although primary memory is essential, it tends to be expensive and does not retain information when
power is turned off. Thus additional, less expensive, permanent secondarystorage is used when large
amounts of data and many programs have to be stored, particularly for information that is accessed
infrequently. Access times for secondary storage are longer than for primary memory. The devices
available are including magnetic disks, optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit

Most computer operations are executed in the arithmetic and logic unit (ALU) of the processor. Any
arithmetic or logic operation, such as addition, subtraction, multiplication division, or comparison of
numbers, is initiated by bringing the required operands into the processor, where the operation is
performed by the ALU.

When operands are brought into the processor, they are stored in high-speed storage elements called
registers. Each register can store one word of data. Access times to registers are even shorter than access
times to the cache unit on the processor chip.

Output Unit

Output unit function is to send processed results to the outside world. A familiar example of such a
device is a printer. Most printers employ either photocopying techniques, as in lasefprinters, or ink jet
streams. Such printers may generate output at speeds of 20 or more pages per mmﬁte. owever, printers
are mechanlcal devices, and as such are qulte slow compared to the electrom 5k

single name input/output (I/O) unit in many cases.

Control Unit S .
The memory, arithmetic and logic, and I/O units store and pre‘% rmatic W and perform input and
output operations. The operation of these units must be coordinate some way This is the
responsibility of the control unit. The control unit is effectlvely the né“'@&e center that sends control
signals to other units and senses their states. R \(\\\
I/O transfers, consisting of input and output opgtlons are trolled by program instructions that
identify the devices involved and the 1nf0rmati“()“f‘iii'{iggE b;e*‘transierred
Control circuits are responsible for gener;gﬁfﬁ@the tighng S1@als that govern the transfers. They
determine when a given action is to tak@place Data traggefers between the processor and the memory are
also managed by the control unit througg timing 51g§1alsr A large set of control lines (wires) carries the
signals used for timing and synch;@g‘}zaﬁ\ of events in all units.

S
The operation of a computer ¢ hg@l\@@rlzed as follows:
* The computer accepts mﬁmnatlon n thé%"orm of programs and data through an input unit and stores it
in the memory. X mw\&
« Information stored in the Rne’Rg pxl fetched under program control into an arithmetic and logic unit,
processed mform

th% computer through an output unit.
« All actlv@s in the cé@g’uter are directed by the control unit.

Von Neum Ik,a‘r ture

In the 1940s, § mathématician called John Von Neumann described the basic arrangement (or
architecture) ogg-computer. Most computers today follow the concept that he described although there
are other types‘of architecture. A Von Neumann-based computer is a computer that:

Uses a single processor.

Uses one memory for both instructions and data. A von Neumann computer cannot distinguish between
data and instructions in a memory location! It ‘knows’ only because of the location of a particular bit
pattern in RAM.

Executes programs by doing one instruction after the next in a serial manner using a fetch-decode-
execute cycle.

Number Representation and Arithmetic Operations
1.4.1 Integers
Consider an n-bit vector : B=bn—1...blb0 wherebi=0or1for0<i<n-—1.

ViB)=byy x4ty 2 2 by x 2

We need to represent both positive and negative numbers. Three systems are used for representing such
numbers:

* Sign-and-magnitude

* 1’s-complement

* 2’s-complement

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative ny

In [’s-complement represS\gation, negative

values are obtaig% . ienting each

rj.l:lin'nﬁli I's complement 1's complement bit of the con‘g@\pop g pOS?flVG gumber.

Thus, the gpreserggtion ?53 —3 is obtained by

7 7 complemeliyg eachNi i the vector 0011 to

yield 1100.

In the"s -complément system, forming the

2’s-compié dment of an #-bit number is done by

subtr@ctingﬁle number from 2x. Hence, the

2’%é§omplement of a number is obtained by

wadding 1 to the 1’s-complement of that

nugnber.

&

?(“

There are distinct representations for +0 and
—0 in both the sign-and magnitude and 1°’s-
complement systems, but the 2’s-complement
system has only one representation for 0.

Values represented

Addition of Unsigned IntégX¥

The sum of 1 and, g& the ;—%it B

carry-out is 1. We Bths s stirting from the low-order (right) end of the bit vectors, propagating
carries toward the high&grde

bit pair to i@@\:ﬂ Sy
TR ¥

Carry-out

Addition and Subtraction of Signed Integers

The 2’s-complement system is the most efficient method for performing addition and subtraction
operations.

Unsigned integers mod N is a circle with the values 0 through N — 1. The decimal values 0 through 15
are represented by their 4-bit binary values 0000 through 1111.

The operation (7 + 5) mod 16 yields the value 12. To

perform this operation graphically, locate 7 (0111) on the

outside of the circle and then move 5 units in the clockwise

direction to arrive at the answer 12 (1100).

Similarly, (9 + 14) mod 16 = 7; this is modeled on the circle

by locating 9 (1001) and moving 14 units in the clockwise

direction past the zero position to arrive at the answer

7 (0111).

Apply the mod 16 addition technique to the example of

adding +7 to —3. The 2’s-complement representation for
(b) Mod 16 system for 2's-complement numbers these numbers is 0111 and 1101, respectively.

To add two numbers, add their n-bit representations, ignoring the carry-out bit from the most significant bit (MSB) position.

The sum W111 be the algebraically correct value in 2’s-complement representation if the actual result i \15 in the range—2 "'

through+2 "

rule. Agaln the result w111 be the algebralcally correct value in2’s- complement representa,
range —2" through 2" -1

0olao (+2] [0100 (+4])
+0011 (+3] + 1010 (-6}

a1ol (+3] 111a

1011 3) artl
+ 1110 (+ 1101

1001 (-7 aroo

Floating-Point Numbers

If we use a full word in a 32-bit word length comyiffer‘f‘o‘re

range of values that can be represented is —2* to}}“‘ﬂ“* 1.

Since the position of the binary point in a floatii -point numbgr Varles it must be indicated explicitly in the representation.
For example, in the familiar decimal sc1e ﬁc tion, numgérs may be written as 6.0247 X 102, 3.7291 X 10%,-1.0341
X 10%,—7.3000 X 107 these numbﬁs hav“e bee 3 significant digits of precision.

A binary floating-point numberg &gan ﬁ”\‘i%%%&e\ﬁfe y:
'2\.

- a sign for the number .
- some significant bits % N\ ‘*\“‘
- a signed scale factor exponent he base of 2

Character Representf“ﬁ@\w‘{%

B L The most common encoding scheme for characters is ASCII
E— ——— (American Standard Code for Information Interchange).
— = e o Alphanumeric characters, operators, punctuation symbols,
0000 NUL DLE SPACE O @ - and control characters are represented by 7-bit codes. It is
0001 s DCl convenient to use an 8-bit byfe to represent and store a
0010 STX DC2 character.

::]:]; : E: The code occupies the low-order seven bits. The high-order
. NAK bit is usually set to 0. This facilitates sorting operations on
o SYN alphabetic and numeric data.

o111 1. ETB The low-order four bits of the ASCII codes for the decimal
1000 : CAN digits 0 to 9 are the first ten values of the binary number
1001 EM System.

or £ This 4-bit encoding is referred to as the binary-coded
decimal (BCD) code.

S

[e
on

1011 ! ESC
1100 7 F&
1101 GS
110 5 RS
1111

oo
AR =-~=~IOomm
—— N M 2 2D H o

=

A one-bit full adder is a combinational

¢ ¢ circuit that forms the arithmetic sum of three
bits. It consists of three inputs(a,b, and cin)

and two outputs(s, and cout) _ as

Full Adder [—m= illustrated in Figure 1.

v

Table 1: Full adder truth table. The truth table of 1-bit full adder is given in
the table

-
=
>

C C

2

== = = D O O D
- (DD e = O D
= = R]
[e = B e B e R e T
[R T B]

1l
U

Legend for stage |

Figure 9.1 Logic specification for a singe of binary addifion

Ripple carry adder @3}:” 2

A ripple carry adder is a digitaf‘@ "1t that- u.égs the arithmetic sum of two binary numbers. It can be constructed with full
adders connected in cascaded. wWith car%%’utput from each full adder connected to the carry input of the next full adder in
the chain. Figure 3 s WS Ehe intg{\con &tion of four full adder (FA) circuits to provide a 4-bit ripple carry adder. Notice from
Figure 3 that the inﬁM&fhgﬁde because the first cell traditionally represents the least significant bit (LSB). Bits

a0 and b0 _ in the ﬁgureﬁrgpre e least significant bits of the numbers to be added. The sum output is represented by the

bits sO and s s@ S,
\»\“w ‘k.it’
Ripple carr o
Y **’ &

In the ripple car&adder the output is known after the carry generated by the previous stage is produced. Thus, the sum of
the most mgmﬁca& bit is only available after the carry signal has rippled through the adder from the least significant stage
to the most s1gn1f cant stage. As a result, the final sum and carry bits will be valid after a considerable delay.

Table 2 shows the delays for several CMOS gates assuming all gates are equally loaded for simplicity. All delays are
normalized relative to the delay of a simple inverter. The table also shows the corresponding gate areas normalized to a
simple minimum-area inverter. Note from the table that multiple-input gates have to use a different circuit technique
compared to simple 2-input gates.

For an n-bit ripple carry adder the sum and carry bits of the most significant bit (MSB) are obtained after a normalized delay
of

Sums, | delay = 4dp 42 (1)

Carry ¢, delay = 4dn+3 2)

For a 32-bit processor, the carry chain normalized delay would be 131. The ripple carry adder can get very slow when many
bits need to be added. In fact, the carry chain propagation delay is the determining factor in most microprocessor speeds.

Carry lookahead adder (CLA)

The carry lookahead adder (CLA) solves the carry delay problem by calculating the carry signals in advance, based on the
input signals. It is based on the fact that a carry signal will be generated in two cases:

(1) when both bits ai and bi are 1, or

(2) when one of the two bits is 1 and the carry-inis 1.

Thus, one can write,

oy = a.b+ (a; Db (3)
5; = (a; @ b)) B e (4)

The above two equations can be written in terms of two new signals Pi and Gi , which are shown in Figure 4

N\
N

\
SN
S
N \‘y

Where Pi and Gi are called the carry generate and carry propagate terms, i3 tively. Not lat the generate and propagate
terms only depend on the input bits and thus will be valid after one and two gg elay, respéctlvely If one uses the above
expression to calculate the carry signals, one does not need to wait for the carry% fpple through all the previous stages to
find its proper value. Let’s apply this to a -bit adder to make it gjear W"&"‘

Notice that the carry-out bit, , of the last stage will be avallab&““ﬁer four c{@ﬁys twd gate de- lays to calculate the propagate
signals and two delays as a result of the gates required to ghpleméx&l Equ"ﬁlon 13.

i — (7,. Rl‘,

(6)

Gy = gy
P, = a; &b

Putting ¢ = 0, 1,2, 3 in Equation 5. we get

cr = Go+ ey (10)
e = G+ PL.Gy+ P.Fyeo (11)
c3 = G+ B.Gy+ Po.PL.Gy+ PP ..y (12)
cs = Gz+ PG+ Py PGy + P3P PGy + P PPy ey (13)

Figure 5 sho 4 blt CL%ﬁs built using gates to generate the and signals and a logic block to generate the carry out
signals accord g to s 10 13

The disadvantage of CLA is that the carry logic block gets

very complicated for more than -bits. For that reason, CLAs

are usually implemented as 4-bit modules and are used in a
? ? ? ? hierarchical structure to realize adders that have multiples of

4 -bits.

P P
k3 51

Figure 5: 4-Bit carry lookahead adder implementation detail.

Shift — Add Multiplier

Multiplication is often defined as repeated additions. Thus, to calculate 11 % 23, you would start with 0 and add 11 to it 23

times.

w1
1101
Initial configuration
coo] [1o1 1]

A Q
101 101
110 110

First cycle

1 110

L1 Second cvcle

Fourth cycle

Product

{b) Multiplication example

Consider the above figure in which the multiplier and multiplicand values are givegas IOIM O\K/hlch are loaded into
the Q and A registers respectively. :

Initially the register C is zero and hence the A register is zero, which stores the carry i

ce the addit1

cle are 011088nd 1101 respectlvely
%ﬁlnal multlphcatlon result will be available

Since the B0 =1, then the number in the B is added to the bits of A and pr
register are shifted their values one bit right so the new values during the ﬁr
This process has to be repeated four times to perform the 4 bit multiplication.

in the A and Q registers as 10001111

Booth Multiplier

In this, the 4 bit multiplier is stored in Q register, the 4
bit multiplicand is stored in register B and the register
A is initially cleared to zero. The multiplication process
starts with checking of the least significant bit of B
whether itis 0 or 1.

If the BO = 1, the number in the multiplicand (B) is
added with the least significant bits of the A register
and all bits of C, A and Q registers are shifted to the
right one bit.

If the bit BO = 0, the combineg C and Q reglsters are
shifted to the right by one bit

addition. This process is repeate

numbers. This methog

as parallel multiplie& ;{9«

Yl\ %&X;iiy

1 I 1 0
O+1+1+1+1

00
o1
1

2's complement of
the multiplicand

0

The Bi oth algorithm generates a 2n-bit product and treats
oth gR)smve and negative 2’scomplement n-bit operands
%f ormly. In general, in the Booth algorithm, —1 times the
fted multiplicand is selected when moving from O to 1,
and +1 times the shifted multiplicand is selected when
moving from 1 to 0, as the multiplier is scanned from
right to left.

01 101 (+13) o110
=1 1 01 0 {—6) 0-1+1-1
o o0
11

1

(b) Carmry-save array

Multiplication requires the addition of several summands.
A technique called carry-save addition (CSA) can be
used to speed up the process.

This structure is in the form of the array in which the first
row consists of just the AND gates that produce the four
inputs m3qo, m2qo, miqo, and moqo.

Instead of letting the carries ripple along the rows, they
can be “saved” and introduced into the next row, at the
correct weighted positions.

Integer Division

Shift left

Drividend

Quoticnt
sciting

Add/Subtract

Control

Divisor M

Figure 9.23 Circuit arrangement for binary division.

sequencer

T
11] 1000
11

10
ooo

0o

Initially

Shift
Subtract
Set 4,
Restore

First cycle

1
0o
Shift o [o][]
Subtract
Set g, Second cycle
Restore

T
V] |
o [o][e][] &,r“

Shift
Subtract
Set gy

0
1
0
o
1
1
0
1
0
1
1
1
0
0
0

Third cycle

T 5}&\\‘1
o @) AN
mimm!

Shift
Subtract
Sct gy

Fourth cycle
Restore

1
0
1
1]

1 [0l @[[

—_—
Quotient

000
_—
Remainder

Restoring Division R

K

,

MKKW&&ﬁ

Initially

Shift
Subtract
Set g,

Shift
Add
Set gy

Second cycle

Shift
Add
Set ay

Third cycle

Shift
Subtract
Set g,

Fourth cycle

Cuotient

o0 o 11
oo0o 1o

—
Remainder

Restore remainder

Figure 9.25

A non-restoring division example.

Non restoring division

An n-bit positive divisor is loaﬁglnto reglster M §1d an
n-bit positive dividend is loade&. X the start
of the operation. Register A is séfto N\ e d1V1Slon is
complete, the n-bit q&&%&% in Péglste i and the
remainder is in reglster ‘{% ‘«?\ d

The requlred subtractlons a famhtated by using 2’s-
complement’ tic. The e%a bit position at the left
end of both A“%pd : odates the sign bit during
subtractions. TMHOWI valgorlthm performs restoring
division.

Do the following & &%ee steps n times:

1. Shift A and Q left one bit position.

2. Subtract M from A, and place the answer back in A.

3. If the sign of A is 1, set goto 0 and add M back to A
(that is, restore A); otherwise, set

goto 1.

If A is positive, we shift left and subtract M, that is, we perform
2A— M. If Ais negative, we restore it by performing A+ M,
and then we shift it left and subtract M.

This is equivalent to performing 2A+ M. The qobit is
appropriately set to 0 or 1 after the correct operation has been
performed. following algorithm for non-restoring division.

Stage 1: Do the following two steps n times:

1. If the sign of A is 0, shift A and Q left one bit position and
subtract M from A; otherwise, shift A and Q left and add M to
A.

2. Now, if the sign of A is 0, set goto 1; otherwise, set go to 0.
Stage 2: If the sign of A is 1, add M to A.

Stage 2 is needed to leave the proper positive remainder in A
after the n cycles of Stage 1.

Introduction to x86 architecture.

Instruction set architecture of a CPU: Registers, instruction execution cycle, RTL Interpretation
of instructions, addressing modes, instruction set.

CPU Control unit design: Hardwired and micro-programmed design approaches

X86 Architecture

REGISTERS The processor »p%\yld\\&g sters for use in general system and application
up

programming. These reglsters gan be llows:

* General-purpose data regis 1ght registers are available for storing operands and pointers.
S

» Segment registers. Thega§e glsters hold@p to six segment selectors.

e Status and control re?%g S. We registers report and allow modification of the state of the

processor and of g&%rogra Ng.executed.

\“ﬁﬁi&
General-Purpose Dﬁ%g Rle%ters

The 32- blf@ eral- purp‘ﬁs&data registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided
for holdmg‘ﬁiM%gg items:

* Operands ‘f\Q\@toglc and arithmetic operations

* Operands fo%address calculations

« Memory ponﬁ?ﬁ‘fs

Although all of these registers are available for general storage of operands, results, and pointers,
caution should be used when referencing the ESP register. The ESP register holds the stack pointer and
as a general rule should not be used for any other purpose.

Segment Registers

The 6 Segment Registers are:
o Stack Segment (SS). Pointer to the stack.
e Code Segment (CS). Pointer to the code.
o Data Segment (DS). Pointer to the data.

Extra Segment (ES). Pointer to extra data ('E' stands for 'Extra’).

F Segment (FS). Pointer to more extra data ('F' comes after 'E').

G Segment (GS). Pointer to still more extra data ('"G' comes after 'F').
Most applications on most modern operating systems (FreeBSD, Linux or Microsoft Windows) use
a memory model that points nearly all segment registers to the same place and uses paging instead,
effectively disabling their use. Typically the use of FS or GS is an exception to this rule, instead
being used to point at thread-specific data.

x86 Processor Registers and Fetch-Execute Cycle

There are 8 registers that can be specified in assembly-language
instructions: eax, ebx, ecx, edx, esi, edi, ebp, and esp. Register esp points to the "top" word currently in
use on the stack (which grows down).

Register ebp is typically used as a pointer to a location in the stack frame of th\e*§

functlon

assembly language program.
These are eip, the "instruction pointer" or "program counter"; and eﬂ}l
the result of arithmetic and compare instructions. S y
The basic operation of the processor is to repeatedly fetch and ute instrugsions.
while (running) { '

fetch instruction beginning at address in e1pz

eip <- eip + length of instruction;

execute fetched instruction;

) 5

Execution continues sequentially unless e«)&@utlon‘ ;a%tructlon causes a jump, which is done by
storing the target address in eip (this 1s,§10w condltlo id unconditional j jumps, and function call and
return are implemented). S

&‘
M \ #
Addressing modes 7 \g&&&r

The addressing mode indicates how the operand is presented.
Register Addressing

Operand address R is in the address field.
SR §OF

mov ax, bx

T
Immediate

Aactual value is in the field.
T

mov ax, |

Or:

mov ax, 010Ch

Direct memory addressing

Operand address is in the address field.

.data
my var dw Oabcdh
.code

mov ax, [my_var]

Direct offset addressing

Uses arithmetics to modify address.

byte tbl db 12,15,16,22

mov al,[byte tbl+2]

mov al,byte tbl[2]
AW
Register Indirect
Field points to a register that contains the operand address.
RSN
mov ax,[di]

Ny &
The registers used for indirect addressing are BX, BP, SI, DI

Base-index ‘ ‘
2SS\

mov ax,[bx + di]

For example, if we are talking about an array, BX contains the address of the beginning of the array, and
DI contains the index into the array.

Base-index with displacement

oo W

mov ax,[bx +di + 10]

& F

X

CPU Opération Modes

Real Mode

Real Mode is a holdover from the original Intel 8086. The Intel 8086 accessed memory using 20-
bit addresses. But, as the processor itself was 16-bit, Intel invented an addressing scheme that
provided a way of mapping a 20-bit addressing space into 16-bit words. Today's x86 processors
start in the so-called Real Mode, which is an operating mode that mimics the behavior of the 8086,
with some very tiny differences, for backwards compatibility.

Protected Mode

Flat Memory Model

If programming in a modern operating system (such as Linux, Windows), you are basically

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#CPU_Operation_Modes

programming in flat 32-bit mode. Any register can be used in addressing, and it is generally more
efficient to use a full 32-bit register instead of a 16-bit register part. Additionally, segment registers
are generally unused in flat mode, and it is generally a bad idea to touch them.

Multi-Segmented Memory Model

Using a 32-bit register to address memory, the program can access (almost) all of the memory in a
modern computer. For earlier processors (with only 16-bit registers) the segmented memory model
was used. The 'CS', 'DS', and 'ES' registers are used to point to the different chunks of memory. For
a small program (small model) the CS=DS=ES. For larger memory models, these 'segments' can
point to different locations.

Register Transfer Language And Micro Operations:

Register Transfer language: x&; \
Digital systems are composed of modules that are constructed from digital comp ts, such
as registers, decoders, arithmetic elements, and control logic witéi N
The modules are interconnected with common data and control pa S to‘%;m a igital

computer system x
. . . N
The operations executed on data stored in registers are called micfoQgeratio gwgir
A microoperation is an elementary operation performed on the infoR¥gtion stored in one or
more registers \Q& ~'
Examples are shift, count, clear, and load %i‘x« s
Some of the digital components from before are reglst at implement microoperations
The internal hardware organization ngﬁl“dl gital c@mputef 1s best by
specifying &i{” ~\"‘
o The set of registers it contais atgé”c‘fhelr functions
o The sequence of mlcgmera s perfgined on the binary information stored
. The control that 1n§ﬁates the seqﬁ%@t;e of microoperations
g. S
Use symbols, rather than words, ta| pe . the sequ§nce of microoperations
The symbolic notation used is ef ed® re @ﬁ%fer language
A programming language is a {,\\-r writing symbols to specify a given computational process
Define symbols for Varlo@;“ypv\é mlcr(iéﬁperatlons and describe associated hardware that can
implement the microoper \1& . M&
Register Transf] &\\ ‘I‘igx ;fx"’"
Designate computef‘%ge Y Eapital letters to denote its function.
The reglster that hold§ 131;1 address for the memory unit is called MAR.
The progra Ssanter regfﬁfer is called PC.
IR is the inst { O wister and R1 is a processor register
The individu ‘\ﬂ1p -ffops in an n-bit register are numbered in sequence from 0 to n-1

Refer to Figur&g1 for the different representations of a register
) Figure 4-1 Block diagram of register.

r R1 1 [7654'3210]

(a) Register R (b) Showing individual bits

15 8 7
R2 [pcan | Pcw

(c) Numbering of bits (d) Divided into two parts

e Designate information transfer from one register to another by R2 [R1
e This statement implies that the hardware is available
e The outputs of the source must have a path to the inputs of the destination
e The destination register has a parallel load capability
e If the transfer is to occur only under a predetermined control condition, designate it by
If (P =1) then (R2 [J R1)or, P: R2 [1 R1,where P is a control function that can be either 0 or 1
e Every statement written in register transfer notation implies the presence of the required hardware
construction

Figure 4-2 Transfer from R1 to R2 when P = 1. T AB].,E 4'1 BaSic SmbOlS fﬂf Reglster Tmnsfe i

Control | F Load

R2 Clock

circuit

}o Symbol Descrption Examples

o]

(8) Block dingram Letters Denotes a register MAR, R2

(and numerals)

el Parentheses () Denotesapartof aregister ~ R(0-7) R2(
Clock N H 1 [Arrow Denotes transfer of information R2 « R

o/ (Comm, Separaestwo miconperaions R « K1, R1 R

Transfer occurs here J

(b) Timing diagram

\J
N

‘k@% &3\
ii'st\v”

Arithmetic Micro-operations & 3 g?
\ £ .
There are four categories of th&nost comMieitro operations:
Register transfer: transfer,bi ion from one register to another

Arithmetic: perform aritks th 0perat10n§ on numeric data stored in registers

Logic: perform bit manip AN ope‘?gﬁﬁns on non-numeric data stored in registers

Shift: perform Shé{gﬁ%gat h Xata stored in registers

The basic arlthmetlc‘ﬁglc rations are addition, subtraction, increment, decrement, and shift
Example a{gi dition: R?i&{g R1+R2

Subtractlom”s %}en Tmplemented through complementation and addition

Example of mrac R3 [J R1 +R2 + 1 (strikethrough denotes bar on top — 1*s complement 0fR2)
Adding 1 to tﬁ@ 1*s complement produces the 2*s complement

Adding the co&@‘hts of R1 to the 2*s complement of R2 is equivalent to subtracting

G

-

S2 S]

Figure 4-6 4-bit binary adder.

Multiply and divide are not included as micro operations

A micro operation is one that can be executed by one clock pulse

Multiply (divide) is implemented by a sequence of add and shift micro operations (subtract

and shift)

To implement the add micro operation with hardware, we need the registers that hold the data and the
digital component that performs the addition

A full-adder adds two bits and a previous carry

A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers of any
length

A binary added is constructed with full-adder circuits connected in cascade

An n-bit binary adder requires n full-adders

The subtraction A-B can be carried out by the following steps
Take the 1*s complement of B (invert each bit)

Get the 2s complement by adding 1

Add the result to A :

The addition and subtraction operations can be combined into %{;e co

XOR gate with each full-adder S -

The increment micro operation adds one to a number in a reglster %

This can be implemented by using a binary counter — every time the @m enable is active, the count is
incremented by one ’,,M \\ &

If the increment is to be performed 1ndependen‘g_2)‘f a pa{[wculﬁ register, then use half-adders
connected in cascade ‘"‘"ggg:} n%“ K

N

An n-bit binary incrementer requires n hgl&i‘ﬁders.&@ &

Each of the arithmetic micro operatlon%can be 1mplem§‘fed in one composite arithmetic circuit
The basic component is the parallel addg ' 3
Multiplexers are used to choosg, ey glfffé@nt operations
The output of the binary adder&s; calg ¥ the following sum: D=A +Y +Cj,
R
Logic Microoperations ’“32 W&M&
Logic oper@\%%gecfi ky bi ;i‘y operations for strings of bits stored in registers and treat each bit
separately g &% “?\ i

Exa %le the X((}Qs of Rl and R2 is symbolized by
P: ’1 1 RIP R2
Exampe: &%@10 and R2 = 1100
x: 1010 Content of R1
‘% 1100 Content of R2

0110 Content of R1 after P =1

Symbols used for logical microoperations:

o OR: 0

o AND: [

o XOR: &
The + sign has two different meanings: logical OR and summation
When + is in a microoperation, then summation

® Example:

P+Q:R11J R2+R3,R4[] R5[1 R6

When + is in a control function, then OR

There are 16 different logic operations that can be performed with two binary variables
The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers

All 16 microoperations can be derived from using four logic gates

Figure 4-10 One stage of logic circuit.

Output

Operation

E=AAB

E=AvB

E=A®B

E=

AND
OR
XOR

Complement

3

(b) Function table

(a) Logic diagram

%

1100

“t,

s
-

B
/:,xt‘*‘\\“\.
4

iiftgss, ;

7 ﬂ@
.
e

7
|
il

e Logic microoperations can be used to change

bit values, delete a group of bits, or insert
new bit values into a r

The selective-set operation

in A where therg i85 3

1010 A before %

The selectiveNgmplement operation

coJ ¥alements biNg-A where there are
corredganding 1S in B
1010 A befohl, .

B N
: 3 @ iy

(logic @%rand) 0110 A after

A%, ADB

4 Ike selective-clear operation clears to 0 the

iy . . .

%—k@%lts in A only where there are corresponding

1“sin B

1 1010 A before

1100 B (logic operand) 0010 A

after A AB

%

e The mask opgration
only wher¢
1010 A before

1100 B &\@%

e (}:gesp*”””onding 0“sin B
‘%{&tw

(logic operdpdiNQRQ. A+
after A [Aﬁ@yﬁ “‘\?

e The inséig operétion inserts a new value into a group of bits

e Thisis d@'té by first masking the bits to be repl
inserted

aced and then Oring them with the bits to be

01101010
0000 1111
0000 1010

0000 1010

1001 0000
1001 1010

A before
B (mask)
A after masking

A before

B (insert)
A after insertion

e The clear operation compares the bits in A and B and produces an all 0*s result if the two number
are equal
1010 A
1010 B
0000 ATl ADB

Shift Microoperations
Shift microoperations are used for serial transfer of data
They are also used in conjunction with arithmetic, logic, and other data- processing operations
There are three types of shifts: logical, circular, and arithmetic
A logical shift is one that transfers 0 through the serial input
The symbols shl and shr are for logical shift-left and shift-right by one position K
The circular shift (aka rotate) circulates the bits of the register around the two ends
information
The symbols cil and cir are for circular shift left and right

The arithmetic shift shifts a signed binary number to the left or righ&.\“ X g‘%‘g
To the left is multiplying by 2, to the right is dividing by 2. RS \i\ :
Arithmetic shifts must leave the sign bit unchanged. . \

A sign reversal occurs if the bit in R,,.; changes in value aft@\{ shift. S

This happens if the multiplication causes an overflow. - %%
An overflow flip-flop V; can be usedto detect L«*“f“%
; >

iyt

theoverflow Vs= Rn.1 ®R;2

Lo\ oy

Sign
bit

Figure 4-11 Arithmertic shift right.

R &
e A bi-directional shift unﬁ*‘%%}‘fh p‘g @)\lg@é’” could be used to implement this
e Two clock pulses are & es ght %wconﬁguration' one to load the value and another to
shift S
e Inaprocessor unitihN§§ many regéSters it is more efficient to implement the shift operation with
a combinational circuit \“i l
e The con‘gj@“&@g&egﬁter e shifted is first placed onto a common bus and the output is
connected to the %{9?% ondl shifter, the shifted number is then loaded back into the register

5,

o Thj{jan be co%ﬁ%ructed with multiplexers
R S
Ar1t]§3§§;§% Unit
\;Z e The arithmetic logic unit (ALU) is a common operational unit connected to a

¥+ number of storage registers

“e To perform a microoperation, the contents of specified registers are placed in the
inputs of the ALU
The ALU performs an operation and the result is then transferred to a destination
register
The ALU is a combinational circuit so that the entire register transfer operation
from the source registers through the ALU and into the destination register can
be performed during one clock pulse period

Micro Programmed Control

A control unit whose binary control variables are stored in memory is called a microprogrammed
control unit. Each word in control memory contains within it a microinstruction. The microinstruction
specifies one or more microoperations for the system. A sequence of microinstructions constitutes a
microprogram .Since alterations of the microprogram are not needed once the control unit is in
operation, the control memory can be a read-only memory (ROM).

A more advanced development known as dynamic microprogramming permits a microprogram to be
loaded initially from an auxiliary memory such as a magnetic disk.

Control units that use dynamic microprogramming employ a writable control memory. This type of
memory can be used for writing (to change the microprogram) but is used mostly for reading.

A memory that is part of a control unit is referred to as a control memory.

Figure 7-1 Microprogrammed control organization.

Next -

address
generator
(sequencer)

Control Control Control
address memory data
register (ROM) register

Next-address information

The next address generator is sometimes called a microproggam sequencer, as it determines the
address sequence that is read from control memory.
The control data register holds the present mlcr@m\stmctlokwhlle%e next address is computed and
read from memory. ’,r» % @
The data register is sometimes called a pipe regi,

X X
The main advantage of the mlcroprogran@ed frol is t&e fact that once the hardware configuration

L

is established, there should be no nee@"for flirther \z&‘?re or wiring changes. If we want to establish
a different control sequence for 'e system, (all e need to do is specify a different set of
microinstructions for control me The hgrdware configuration should not be changed for
N
different operations; the on)s %‘ﬁﬁﬂng zgnusg&%e changed is the microprogram residing in control
memory. It should be ment@\ned %@{?0 \‘6mputers based on the reduced instruction set computer
Y
(RISC). @3}“

. ‘\\6’

Address Sequencing ¥ \&.
Mlcromstructlon tore an Nig#0] memory in groups, with each group specifying a routine.
The transformatf\ﬁ Ninstruction code bits to an address in control memory where the routine is
located is referred to Q&aﬁ%‘pmg process.
A mappm edure 1§§mle that transforms the instruction code into a control memory address
1. Incremermr%%&ohtrol address register.
2. Uncondltf&gal bragth or conditional branch, depending on status bit conditions.
3.A mapplng rocess from the bits of the instruction to an address for control memory.
4. A facility fo§3§ubrout1ne call and return

Conditional Branching

Special Bits : The branch logic provides decision-making capabilities in the control unit. The status
conditions are special bits in the system that provide parameter information such as the carry-out of an
adder, the sign bit of a number, the mode bits of an instruction, and input or output status conditions

Branch Logic : The branch logic hardware may be implemented in a variety of ways. The simplest way
is to test the specified condition and branch to the indicated address if the condition is met; otherwise,
the address register is incremented. This can be implemented with a multiplexer.

Mapping of Instruction: A special type of branch exists when a microinstruction specifies a branch to
the first word in control memory where a microprogram routine for an instruction is located. The status
bits for this type of branch are the bits in the operation code part of the instruction.

Microinstruction Format

The microinstruction format for the control memory is shown in Fig. The 20 bits of the microinstruction
are divided into four functional parts. The three fields F1, F2, and F3 specify microoperations for the
computer. The CD field selects status bit conditions. The BR field specifies the type of branch to be
used. The AD field contains a branch address. The address field is seven bits wide, since the control
memory has 128 =27 words.

15 14 11 10 Symbol Opcode Description

II[Opcode | ADD 0000 AC «— AC + M [EA]

BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA] « AC

EXCHANGE 0011 AC «— M[EA], M[EA] + AC

EA is the effective address

3 3 z pi Y %
¥ i‘
FIIF2|F3-|CD|BR| S %w*
F1. F2. F3: Microoperation fields &\é

CD: Condition for branching "“} HL—

BR: Branch field

e,
AD: Address field A ‘%&\;\\
¥ N

s

. ¥
a microinstruction can specify two mmultaneoﬁ%mcg@%péra&{ons from F2 and F3 and none from FI.
DR« M[AR] with F2 = 100

and PC<PC +1 with F3 = 101

§.~3“

Memory system design: Semiconductor memory technologies, memory organization.
Memory organization: Memory interleaving, concept of hierarchical memory organization, Cache
memory, cache size vs. block size, mapping functions, Replacement algorithms, write policies.

Semiconductor Memory Technologies:

Semiconductor random-access memories (RAMs) are available in a wide range of speeds.
Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any
electronics assembly that uses computer processing technology. The use of semiconductor memory has
grown, and the size of these memory cards has increased as the need for larger and larger amounts of
storage is needed.

There are two main types or categories that can be used for semiconductor’ ‘E@
RAM - Random Access Memory: As the names suggest, the RAM or ra
form of semiconductor memory technology that is used for reading and Wrﬁ,mg %
other words as it is required by the processor. It is used for such applicationiy s the N N puter or
processor memory where variables and other stored and are requlred\ a randyg basgs. Data is stored
and read many times to and from this type of memory. \ st

A\\‘Six.

Block Diagram Representing 128 x 8 RAM
(Random Access Memory)
oSN
ROM - Read Only Mem@‘y M}?@ form of semiconductor memory technology used where the
data is written once and thgggot ch@nged&‘ln view of this it is used where data needs to be stored
permanently, even when th er 1”?{6m0ved many memory technologies lose the data once the
power is removedgg%%es@t thE#ype of semiconductor memory technology is widely used for storing

programs and data ¥ g%%lgrque when a computer or processor is powered down. For example the
BIOS of a computer \"%ll red in ROM. As the name implies, data cannot be easily written to ROM.

¥aghe techno‘}@gy used in the ROM, writing the data into the ROM initially may require

special hard%zv“‘f 2 gh it is often possible to change the data, this gain requires special hardware to
erase the datﬁxgéady (Br new data to be written in.

"xwz{zf?

Chip Select 1

Chip Select 2 Cs; 8-Bit Unidirectional
—
Data Bus

9-Bit Address

The different memory types or memory technologies are detailed below:

DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit
of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0.
However these capacitors do not hold their charge indefinitely, and therefore the data needs to be
refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic RAM.
DRAM is the form of semiconductor memory that is often used in equipment including personal
computers and workstations where it forms the main RAM for the computer.

EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written to
it and it can be erased using an electrical voltage. This is typically applied to an era8g pin on the chip.
Like other types of PROM, EEPROM retains the contents of the memory even whn power is turned
off. Also like other types of ROM, EEPROM is not as fast as RAM.

EPROM:

memory can be programmed and then erased at a later time. This is :

silicon to ultraviolet light. To enable this to happen there is a circular ow iny ”backage of the
EPROM to enable the light to reach the silicon of the chip. W kgn the PR is in use, this window is
normally covered by a label, especially when the data may neé be presery 3 for an extended period.
The PROM stores its data as a charge on a capacitor. There is a ch ¢ storage capacitor for each cell
and this can be read repeatedly as required. However it is found that a&st" many years the charge may
leak away and the data may be lost. Nevertheless, t,l*ﬁ?‘type of, gﬁmconductor memory used to be widely
used in applications where a form of ROM was s_;g?qmre buf\)vhere the data needed to be changed

periodically, as in a development env1r0nment? fe d quagtltles were low.
Y«i‘\\ﬁ\ "‘§§§3 gs\

FLASH MEMORY: Flash memory,.ihay be consi “as a development of EEPROM technology.
Data can be written to it and it can be egased, although Only in blocks, but data can be read on an
individual cell basis. To erase and,@‘_pr amme ag;éas of the chip, programming voltages at levels that
are available within electronic gfqulpment " It is also non-volatile, and this makes it particularly
useful. As a result Flash mem RNEE used in many applications including memory cards for digital
cameras, mobile phones puter memo@r sticks and many other applications.

x;.‘.“w\‘gs
F-RAM: Ferroelectric I&A N2 ra \dom-access memory technology that has many similarities to the
standard DRAM«& »The“ ajor difference is that it incorporates a ferroelectric layer instead of
the more usual dleleegpc and this provides its non-volatile capability. As it offers a non-volatile
capability, %RAM 1S aﬂ%rect competltor to Flash.

k,x‘
MRAM: (&“\\\‘% neto resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory
technology t ‘“f uses agnetic charges to store data instead of electric charges. Unlike technologies
including D , which require a constant flow of electricity to maintain the integrity of the data,
MRAM retains’data even when the power is removed. An additional advantage is that it only requires
low power for active operation. As a result this technology could become a major player in the
electronics industry now that production processes have been developed to enable it to be produced.

P-RAM /PCM: This type of semiconductor memory is known as Phase change Random Access
Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a form
of chalcogenide glass changes is state or phase between an amorphous state (high resistance) and a
polycrystalline state (low resistance). It is possible to detect the state of an individual cell and hence use
this for data storage. Currently this type of memory has not been widely commercialized, but it is
expected to be a competitor for flash memory.

PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can
only have data written to it once - the data written to it is permanent. These memories are bought in a
blank format and they are programmed using a special PROM programmer. Typically a PROM will
consist of an array of fuseable links some of which are "blown" during the programming process to
provide the required data pattern.

SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster speeds than
conventional DRAM. It is synchronised to the clock of the processor and is capable of keeping two sets
of memory addresses open simultaneously. By transferring data alternately from one set of addresses,
and then the other, SDRAM cuts down on the delays associated with non- synchronous RAM, which
must close one address bank before opening the next.

power, is less dense and more expensive than DRAM. As a result of th
while DRAM is used as the main semiconductor memory tech%‘-ogy

H

MEMORY ORGANIZATION

o
0
o

N

»»és};“&a,
"i

Memory Interleaving: *‘*“

Pipeline and vector processors o /per}%qul % ult;a“rleous access to memory from two or more
sources. An instruction pipeline may r@Qulre the fet @‘"of an instruction and an operand at the same
time from two different segments. B

Similarly, an arithmetic R&@rn&%ually re;?lurres two or more operands to enter the pipeline at
the same time. Instead of uﬁg two %buses for simultaneous access, the memory can be
partitioned into a number .0 B gennected to a common memory address and data buses. A
memory module is a me i array t0geth§r with its own address and data registers. Figure 9-13 shows a
memory unit with four med\gs. Eaa]%,memory array has its own address register AR and data register
DR. X

Figure 9-13 Multiple module memory organization.

The address registers receive information from a common address bus and the data registers
communicate with a bidirectional data bus. The two least significant bits of the address can be used to
distinguish between the four modules. The modular system permits one module to initiate a memory
access while other modules are in the process of reading or writing a word and each module can honor a
memory request independent of the state of the other modules.

The advantage of a modular memory is that it allows the use of a technique called interleaving.
In an interleaved memory, different sets of addresses are assigned to different memory modules. For
example, in a two-module memory system, the even addresses may be in one module and the odd
addresses in the other.

Concept of Hierarchical Memory Organization
This Memory Hierarchy Design is divided into 2 main types:
External Memory or Secondary Memory
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. perl
are accessible by the processor via /O Module.
Internal Memory or Primary Memory
Comprising of Main Memory, Cache Memory & CPU regist ThlS acces51ble by the

processor. ' \ “““““*i

k9
i
Memory Hierarchy in a Computer System:

Register Magnetic
Memory Tapes

Increasing order of Cache Auxiliary Memory IO Processor

access time ratio Memory

Magnetic
Main Memory Primary Memory disks

Magnetic Disks Ausilary

Memory

Magnetic Tapes

@fﬁx

Characteristics of Memog 1erarch“xé

X

&
N
&

Capacity:

It is the global volume of information the memory can store. As we move from top to bottom in
the Hierarchy, the capacity increases.
Access Time:

It is the time interval between the read/write request and the availability of the data. As we move
from top to bottom in the Hierarchy, the access time increases.
Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed
gap increases between the CPU registers and Main Memory due to large difference in access time. This
results in lower performance of the system and thus, enhancement was required. This enhancement was
made in the form of Memory Hierarchy Design because of which the performance of the system
increases. One of the most significant ways to increase system performance is minimizing how far down
the memory hierarchy one has to go to manipulate data.

Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory

is costlier than External Memory.

Cache Memories:

The cache is a small and very fast memory, interposed between the processor and the main
memory. Its purpose is to make the main memory appear to the processor to be much faster than it
actually is. The effectiveness of this approach is based on a property of computer programs called
locality of reference.

Analysis of programs shows that most of their execution time is spent in routines in which many
instructions are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a
few procedures that repeatedly call each other.

The cache memory can store a reasonable number of blocks at any given time, but this number is
small compared to the total number of blocks in the main memory. The correspondence between the
main memory blocks and those in the cache is specified by a mapping function.

When the cache is full and a memory word (instruction or data) that is not ifthe cache is
referenced, the cache control hardware must decide which block should be removeéd
the new block that contains the referenced word. The collection of rules for mal%lg this
constitutes the cache’s replacement algorithm.

Cache Hits N
The processor does not need to know explicitly about the ex1sfé of the ’Be It simply issues
Read andWrite requests using addresses that refer to locations %‘ghe mem\y, The cache control

s’

circuitry determines whether the requested word currently exﬁt the cachc
If it does, the Read orWrite operation is performed on the appro?rﬁgﬁtzache location. In this case, a read
or write hit is said to have occurred.

o

o
0
o

Cache Misses ” ‘; A

A Read operation for a word that is not““"? ﬁche O'Qnstltutes a Read miss. It causes the block

of words containing the requested word t;yb@‘@op @om tla% main memory into the cache.
L Y

Sy Q
RN &{\i\\

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as
follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained as
following below.

Direct mapping @32:“ I

The simplest way N errm mﬁhe locations in which to store memory blocks is the direct-
mapping technique. In this % block j of the main memory maps onto block j modulo 128 of the
cache, as depict 3 \% “#hus, whenever one of the main memory blocks 0, 128, 256, . . . is
loaded into the cacheg ed in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1,
and so on.; 1nce more" n one memory block is mapped onto a given cache block position, contention
may arise 051t101¥~“even when the cache is not full.

For %\rgfp Structions of a program may start in block 1 and continue in block 129, possibly
after a branch{As thi§ program is executed, both of these blocks must be transferred to the block-1
position in the‘%gzhe Contention is resolved by allowing the new block to overwrite the currently
resident block.#

With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is
determined by its memory address. The memory address can be divided into three fields, as shown in
Figure 8.16. The low-order 4 bits select one of 16 words in a block.

When a new block enters the cache, the 7-bit cache block field determines the cache position in
which this block must be stored. If they match, then the desired word is in that block of the cache. If
there is no match, then the block containing the required word must first be read from the main memory
and loaded into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

Block O

Block 1

Block 127
Block O Block 178

Block 1 Block 120

Block 127 Block 235
Block 256

Block 257

Block 4095

I 5 I 7 I 4 Ihiu:n:r.crnnr_'.'ani'.lm.ks

Tag Block Word

Figure 8.16 Dired-mapped cache.

Associative Mapping 4’9«*‘\"\“‘&\‘

In Associative mapping methodgin which a maigsfiemory block can be placed into any cache
block position. In this case, 12 tag bits e required ’50 i(fentify a memory block when it is resident in the
cache. The tag bits of an address rgeivagrom the processor are compared to the tag bits of each block
of the cache to see if the desirquloc"k is #This is called the associative-mapping technique.

@f}& ety

Block 1

X
e ¥
R ”\%‘g\:&w‘{&&g £ Block D

i
iy

Block 127

Tag Word

Figure 8.17 Associative-mapped coche.

It gives complete freedom in choosing the cache location in which to place the memory block,
resulting in a more efficient use of the space in the cache. When a new block is brought into the cache, it
replaces (ejects) an existing block only if the cache is full. In this case, we need an algorithm to select
the block to be replaced.

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an
associative search.

Set-Associative Mapping

Another approach is to use a combination of the direct- and associative-mapping techniques.
The blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to
reside in any block of a specific set. Hence, the contention problem of the direct method is eased by
having a few choices for block placement.

Mnin
ME Ay

Block 0

Block 1

Block O
Block 1

Block 2

Block 63

Block 64

Block 65

Block 3

Block 127

Block 128

Block 129

Block 126

Block 127

Block 4005

Tag Sat Wioard

=

I & I 1 I 4 I Main memory address

Figure 8.18 Set-ossociative-mapped coche with two blodks per s=t.

e :‘I\‘iﬁ \%f”

At the saﬁl\éﬁm ‘g&&% ardware cost is reduced by decreasing the size of the associative search.
An example of this seﬁwssocz tive-mapping technique is shown in Figure 8.18 for a cache with two
blocks pe kﬁgﬁ%ﬁ this caﬁ@memory blocks 0, 64, 128, . . ., 4032 map into cache set 0, and they can
occupy elth‘ér 0 block positions within this set

Havitgs84 4 set means that the 6-bit set field of the address determines which set of the cache
might containhe desired block. The tag field of the address must then be associatively compared to the
tags of the two%"focks of the set to check if the desired block is present. This two-way associative
search is snnple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements
of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be
accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme
condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique,
with 12 tag bits. The other extreme of one block per set is the direct-mapping.

Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address; hence, the
replacement strategy is trivial. In associative and set-associative caches there exists some flexibility.
When a new block is to be brought into the cache and all the positions that it may occupy are full, the
cache controller must decide which of the old blocks to overwrite.

This is an important issue, because the decision can be a strong determining factor in system
performance. In general, the objective is to keep blocks in the cache that are likely to be referenced in
the near future. But, it is not easy to determine which blocks are about to be referenced.

The property of locality of reference in programs gives a clue to a reasonable strategy. Because
program execution usually stays in localized areas for reasonable periods of time, there is a high
probability that the blocks that have been referenced recently will be referenced again soon. Therefore,
when a block is to be overwritten, it is sensible to overwrite the one that has gone tRg longest time
without being referenced. This block is called the least recently used (LRU) blockx iR\the technique is
called the LRU replacement algorithm.

The LRU algorithm has been used extensively. Although it perform§ we@%&r many#e(
patterns, it can lead to poor performance in some cases. i

\\\i\ :
Werite Policies N
The write operation is proceeding in 2 ways. \\%‘_

e Write-through protocol mi\‘j
e Write-back protocol L_

Y”M .x\\\\
Write-through protocol:

%,
Here the cache location and the main rﬁ"ﬁ@zé@caho&s are updated simultaneously.
/,«i‘\\“o\ "‘§§§3 gs\

Write-back protocol: & “‘i*{{?:\@

This technique is to update only@he cache ldgation and to mark it as with

associated flag bit called w/ ied bit #
The word in the main m’ emory wi Sted later, when the block containing this

marked word is to be r%@%@% the cache to make room for a new block.
To overcome the ik g miss Load jghrough / Early restart protocol is used.

Peripheral devices and their characteristics: Input-output subsystems, I/O device interface,
I/O transfers — program controlled, interrupt driven and DMA, privileged and non-privileged
instructions, software interrupts and exceptions. Programs and processes — role of interrupts in
process state transitions, I/O device interfaces — SCII, USB

Input-output subsystems
The Input/output organization of computer depends upon the size of computer and the
peripherals connected to it. The I/O Subsystem of the computer provides an efficient mode of
communication between the central system and the outside environment.
The most common input output devices are: Monitor, Keyboard, Mouse, Pi§ger, Magnetic tapes
Input Output Interface provides a method for transferring information between intern
external I/O devices. Peripherals connected to a computer need special comm%atlon
interfacing them with the central processing unit. The purpose of commum&atlon
differences that exist between the central computer and each perlpheral \\%(
Ny

S

A

Processor Memory

11O device 1 e /O device n

§

&

The Major Differences are:- /’ ‘»\\\Xﬂ‘_&:&
[]

Peripherals are elecwo@%&g@g@d electromagnetic devices and CPU and memory are
electronic dev1ces§¢here ore, a co§ver510n of signal values may be needed.
The data transfer rARNg peri s is usually slower than the transfer rate of CPU and
consequently, a syn¥hrON atjo mechamsm may be needed.
Data codewgg%s ing e peripherals differ from the word format in the CPU and memory.
The operatmgsgno i perlpherals are different from each other and must be controlled so as
nots\{g disturb th&@)eratlon of other peripherals connected to the CPU.

To resolve t s@ \\1 fices, computer systems include special hardware components between the CPU

and Periphera{s to supervises and synchronizes all input and out transfers. These components are called
Interface Unitsthecause they interface between the processor bus and the peripheral devices.

1/0 device interface

The I/O Bus consists of data lines, address lines and control lines. The I/O bus from the processor is
attached to all peripherals interface. To communicate with a particular device, the processor places a
device address on address lines. Each Interface decodes the address and control received from the I/O
bus, interprets them for peripherals and provides signals for the peripheral controller. It is also
synchronizes the data flow and supervises the transfer between peripheral and processor. Each
peripheral has its own controller.

For example, the printer controller controls the paper motion, the print timing. The control lines are
referred as I/O command. The commands are as following:

Control command- A control command is issued to activate the peripheral and to inform it what to do.
Status command- A status command is used to test various status conditions in the interface and the
peripheral.

Data Output command- A data output command causes the interface to respond by transferring data
from the bus into one of its registers.

Data Input command- The data input command is the opposite of the data output.

In this case the interface receives on item of data from the peripheral and places it in its buffer register.
I/O Versus Memory Bus

To communicate with I/O, the processor must communicate with the rnem(;\r‘:§
bus, the memory bus contains data, address and read/write control lines. The;ce;aﬁiJ
buses can be used to communicate with memory and I/O: {‘.
1. Use two Separate buses, one for memory and other for I/O. ' g
2. Use one common bus for both memory and I/O but separate contrg ines %ach.

3. Use one common bus for memory and I/O with common control fin \ et
&1_ e’

T, &

Address lines
Bus { Data lines

Control lines

Address Data, status, and 1o
decoder Circuits control registers interface

Input device

Flgure 7.2 |/Ointerface for an input device.

Wi% &
Progra%ed /O Nf‘ k ez,

In this ata transfer the operations are the results in I/O instructions which is
a part of com\gﬂ’te&gram Each data transfer is initiated by a instruction in the
program. No\ﬁnally the transfer is from a CPU register to peripheral device or vice-
versa. Once t&" data is initiated the CPU starts monitoring the interface to see when next
transfer can made. The instructions of the program keep close tabs on everything that
takes place in the interface unit and the I/O devices.

The transfer of data requires three instructions:
e Read the status register.
e Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.
e Read the data register.

Figure Data transfer from [/O device to CPU.

Interface
Data bus _ 1/0 bus

Address bus L Data register]
1/0 read 7]

T

Data valid

I/0 write Status

i Data accepted

F = Flag bit

In this technique CPU is responsible for executing data from the memory?
output and storing data in memory for executing of Programmed I/O as shown in Fig.

0 ~x

Drawback of the Programmed I/O: X
The main drawback of the Program Initiated I/O was that the CPU h m(}ﬁi}tor the

units all the times when the program is executing. Thus the CPU Sta xifoop
until the I/O unit indicates that it is ready for data transfer. T suming process
and the CPU time is wasted a lot in keeping an eye to the exé S

Interrupt-Initiated 1/O:
In this method an interrupt facility an 1nter;pt1‘pt comm@‘t@ is used to inform the device
about the start and end of transfer. In the mean&)xme th&(;Pﬁ executes other program. When
the interface determines that the device is rg@{dy fata traé%fer it generates an Interrupt

K
Request and sends it to the computer. {’ %“\,«‘9

When the CPU receives such ang{signal, it tempeXarily stops the execution of the
program and branches to a serv1ce&@\£0g .to procgss the I/O transfer and after completing it
returns back to task, what it wag originall ning.

N

In this type of 10, wmmwl&)t check the flag. It continues to perform its task.

Whenever any device wai}‘ 3 he attentlon %t sends the interrupt signal to the CPU.CPU then

deviates from what it was oMK stof““{ﬁle return address from PC and branch to the address

of the subroutlnevgg\&\%\ by

]

There are two waysm 1 t’he branch address:
Vectored | terrupt ﬂ’i&,yectored interrupt the source that interrupts the CPU
¥ g\{lf({rmatlon This information is called interrupt vectored.
Non-vectore{g}nter ¥pt: In non-vectored interrupt, the branch address is
assigned to th\é fixed address in the memory.
t&rz‘”
Direct Memory Access (DMA):

In the Direct Memory Access (DMA) the interface transfer the data into and out of the
memory unit through the memory bus. The transfer of data between a fast storage device
such as magnetic disk and memory is often limited by the speed of the CPU. Removing the
CPU from the path and letting the peripheral device manage the memory buses directly
would improve the speed of transfer. This transfer technique is called Direct Memory
Access (DMA).

During the DMA transfer, the CPU is idle and has no control of the memory buses. A DMA Controller
takes over the buses to manage the transfer directly between the I/O device and memory.

The CPU may be placed in an idle state in a variety of ways. One common method extensively used in
microprocessor is to disable the buses through special control signals such as:
+ Bus Request (BR)

+ Bus Grant (BG)
These two control signals in the CPU that facilitates the DMA transfer. The Bus Request (BR) input

is used by the DMA controller p@%e%&%&hen this input is active, the CPU terminates the
execution of the current instrugtion !Qilc Yhe address bus, data bus and read write lines into a high
Impedance state. High Imgéda %ns that the output is disconnected.
The CPU activates th o ¥ s Grant (B@ output to inform the external DMA that the Bus Request
(BR) can now take control ¥ 1} ."bus@mo conduct memory transfer without processor.
E@e tRsfer, it disables the Bus Request (BR) line. The CPU disables the Bus

SN

Yy
The transfé ¥ea be ma(i%“ggr’several ways that are:
+ DM B
+ Cycldgttaling™
DMA Burst: Yn DMA Burst transfer, a block sequence consisting of a number of memory words is
transferred in c;:%“[’{tinuous burst while the DMA controller is master of the memory buses.
Cycle Stealing: Cycle stealing allows the DMA controller to transfer one data word at a time, after

which it must returns control of the buses to the CPU.

When the DMA ‘Ws e Ry
Grant (BG), takés & %@{e Buses and return to its normal operation.

3]

DMA Controller:
The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O
device. The DMA controller has three registers:

+ Address Register

+ Word Count Register

+ Control Register

Address Register: Address Register contains an address to specify the desired location in memory.
Word Count Register: WC holds the number of words to be transferred. The register is incre/decre by
one after each word transfer and internally tested for zero.

Control Register: Control Register specifies the mode of transfer

The unit communicates with the CPU via the data bus and control lines. The registers in the
DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and RS
(Register select) inputs. The RD (read) and WR (write) inputs are bidirectional.
When the BG (Bus Grant) input is 0, the CPU can communicate with the DMA registers through the
data bus to read from or write to the DMA registers. When BG =1, the DMA can communicate directly
with the memory by specifying an address in the address bus and activating the RD or WR control.
DMA Transfer: R

The CPU communicates with the DMA through the address and data buses‘f\éf§
any interface unit. The DMA has its own address, which activates the DS a 1 lines.
CPU initializes the DMA through the data bus. Once the DMA receives thmol o

&
W

command, it can transfer between the peripheral and the memory.

When BG = 0 the RD and WR are input lines allowing the CN
with the internal DMA registers. When BG=1, the RD and WR are outp
DMA controller to the random access memory to specify the r§@ or write

data. ‘—iHL

Instructions are divided into two categorl,éﬁ@
non-privileged instructions
+ privileged instructions.
A non-privileged instruction is an imstructlon that any application or user can execute.

& N 4

Examples of non-privileged instructions:

mow 1
addl
ca l 1

- “‘*’ii{
1nstructng on the other hand, is an instruction that can only be executed in
; ctlo”ns are divided in this manner because privileged instructions could

harm the k%@éf

Examples of privileged instructions:

Exceptions and Software interrupts:

Exceptions and interrupts are unexpected events that disrupt the normal flow of
instruction execution. An exception is an unexpected event from within the processor. An
interrupt is an unexpected event from outside the processor. You are to implement
exception and interrupt handling in your multicycle CPU design.

External interrupts come from input input (I/O) devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source. Examples that cause external interrupts
are 1/0 device requesting transfer of data, 1/0 device finished transfer of data, elapsed time of an event,
or power failure.

Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal interrupts
are also called traps. Examples of interrupts caused by internal error conditions are {ggister overflow,
attempt to divide by zero, an invalid operation code, stack overflow, and protection*&glation.

External and internal interrupts are initiated from signals that occur in the hard
A software interrupt is initiated by executing an instruction. g W‘“i“(ﬁgg& :

Software interrupt is a special call instruction that behaves like an”‘“:igterrﬁ watherthan a
subroutine call. It can be used by the programmer to initiate an interrgpt prosggure e}i‘i_iﬁny desired point
in the program. MR e

The most common use of software interrupt is associated with a rvisor call instruction. This
instruction provides means for switching from a CPU user mq8gto the supSRsisor mode. Certain
operations in the computer may be assigned to the supervisor mod&only, as for example, a complex
input or output transfer procedure. %L&\\

A program written by a user must run in th%su@er mode.\éN hen.An input or output transfer is
required, the supervisor mode is requested by meghs ofa sup\ésxvisor call instruction. This instruction
causes a software interrupt that stores the old GR¥, statg™snd rings in a new PSW that belongs to the
supervisor mode. The calling program mgg;@ggs b ;? atiog, o the operating system in order to specify
the particular task requested. 2 ”’e«{“%i?\\\?@

A

' 3
N il ”
Programs and processes-RolM&e%@ocess state transitions
€

software execution in response to a hardware event that

An interrupt is the au'@wrré;ti
is asynchronous with the ¢§ ‘{‘reﬁ’sﬂ%ar xecution. This hardware event is called a trigger. The
hardware event can either%§a busy,to rg@ﬁy transition in an external I/O device (like the UART

iae

input/output) or an intemaf\g u(lilz“é“i“ﬁus fault, memory fault, or a periodic timer).

When the ware Ree r"vice, signified by a busy to ready state transition, it will request an
interrupt by setti’ng%ﬁwag?A thread is defined as the path of action of software as it executes.
The execution of the hterruptservice routine is called a background thread. This thread is created by the

fegaupt requ‘ez‘@ga’nd is killed when the interrupt service routine returns from interrupt (e.g., by
executing a\‘fg R aiew thread is created for each interrupt request.

Itis ﬁ&)@‘grtan, lo consider each individual request as a separate thread because local variables
and registers {\\‘lged in the interrupt service routine are unique and separate from one interrupt event to the
next interrupt. ;§‘I’Va multi-threaded system, we consider the threads as cooperating to perform an overall
task. Consequently we will develop ways for the threads to communicate (e.g., FIFO) and to
synchronize with each other. Most embedded systems have a single common overall goal.

On the other hand, general-purpose computers can have multiple unrelated functions to perform.
A process is also defined as the action of software as it executes. Processes do not necessarily cooperate
towards a common shared goal. Threads share access to I/O devices, system resources, and global
variables, while processes have separate global variables and system resources. Processes do not share
I/O devices.

Statusl
Busy wait Interrupt

Input/ Cutput
datal
Status?

return from interrupt Interrupt

Tnput/ Output
data2
Status3

Interrupt return from mterrupt

Iuput Output Tnput/ Output
data3 data3
Other

funch ons return from interrupt
| I |

AN

1/0 Device Interfaces mi\‘“\
L_

SCSI:

The acronym SCSI stands for Small Com;ngter Syste%\‘ihterface It refers to a standard bus
defined by the American National Standards I ;ute QM SI) under the designation X3.131 . In the
original specifications of the standard, deV1CQs su § disks %re connected to a computer via a 50-wire
cable, which can be up to 25 meters in len*gﬁl‘ﬁhd ca nsﬁér data at rates up to 5 megabytes/s. The
SCSI bus standard has undergone man}é‘rewsmns and “data transfer capability has increased very
rapidly, almost doubling every two yea#g, SCSI-2 aﬁd S$CSI-3 have been defined, and each has several
options. ,«@g\\\&w \5 \

A SCSI bus may have%\ght data l&@ﬁ“gwhlch case it is called a narrow bus and transfers data

one byte at a time. Alternagive 3 SI bus has 16 data lines and transfers data 16 bits at a time.
There are also several op it for the elecmcal signaling scheme used. Devices connected to the SCSI
bus are not part of the addiedN ace‘%@fhe processor in the same way as devices connected to the
processor bus. Thg igSI bug is cted to the processor bus through a SCSI controller. This controller
uses DMA to trafi: Xckets” from the main memory to the device, or vice versa. A packet may
contain a block of data, coniands from the processor to the device, or status information about the

device. *% S - %i‘mﬁ'
TOW operation of the SCSI bus, let us consider how it may be used with a disk drive.

CommunicafogwitiNe disk drive differs substantially from communication with the main memory. A
controller con‘gected to a SCSI bus is one of two types — an initiator or a target. An initiator has the
ability to selec‘&}af"partlcular target and to send commands specifying the operations to be performed.
Clearly, the controller on the processor side, such as the SCSI controller, must be able to operate as an
initiator. The disk controller operates as a target. It carries out the commands it receives from the
initiator. The initiator establishes a logical connection with the intended target. Once this connection has
been established, it can be suspended and restored as needed to transfer commands and bursts of data.
While a particular connection is suspended, other device can use the bus to transfer information. This
ability to overlap data transfer requests is one of the key features of the SCSI bus that leads to its high
performance.

Data transfers on the SCSI bus are always controlled by the target controller. To send a
command to a target, an initiator requests control of the bus and, after winning arbitration, selects the
controller it wants to communicate with and hands control of the bus over to it.

Then the controller starts a data transfer operation to receive a command from the initiator.

The processor sends a command to the SCSI controller, which causes the following sequence of
event to take place:
1. The SCSI controller, acting as an initiator, contends for control of the bus.
2. When the initiator wins the arbitration process, it selects the target controller and hands over control
of the bus to it.
3. The target starts an output operation (from initiator to target); in response to this, the initiator sends a
command specifying the required read operation.
4. The target, realizing that it first needs to perform a disk seek operation, sends a message to the
initiator indicating that it will temporarily suspend the connection between them. Then it releases the
bus.
5. The target controller sends a command to the disk drive to move the read head t \the first sector
involved in the requested read operation. Then, it reads the data stored in that sectdr stores them in a
data buffer. When it is ready to begin transferring data to the initiator, the targ% equest
bus. After it wins arbitration, it reselects the initiator controller, thus restorfag the
6. The target transfers the contents of the data buffer to the initiator and the
again. Data are transferred either 8 or 16 bits in parallel, depending g
7. The target controller sends a command to the disk drive to performﬁ her se
transfers the contents of the second disk sector to the initiator %“Before € | end of these transfers, the
logical connection between the two controllers is terminated. < 5 .
8. As the initiator controller receives the data, it stores them 1nt(:hﬁmaln memory using the DMA
approach. T
9. The SCSI controller sends as interrupt to the pro@é‘Ssor to 1n&®m it fhat the requested operation has
been completed.

This scenario show that the messages 5@%@ d ov (the SCSI bus are at a higher level than
those exchanged over the processor bus. ;p«fﬂ}is corﬁéé a “laagher level” means that the messages refer
to operations that may require several stﬁps to comple 3 pendmg on the device. Neither the processor
nor the SCSI controller need be aware @ the detalls‘gof Operatlon of the particular device involved in a
data transfer. In the preceding exg@gle, processgr need not be involved in the disk seek operation.

& N
USB W\&
The USB has been desig to meéet severﬁl key objectives:

Provide a simple, % gost, il sy to use interconnection system that overcomes the
difficulties due to th N ed, number of /O ports available on a computer. <
Accommsek id%< rand¥ of data transfer characteristics for /O devices, including telephone
and Internet & @Qn \MS ¢
En] ance user cémz\iemence through a “plug-and-play” mode of operation.
e
USB Struct e & \\K‘\\‘\k“

& A seriyf transinission format has been chosen for the USB because a serial bus satisfies the low-
cost an‘%‘;ﬂexrbrhty requirements.

+ Clock ahd data information are encoded together and transmitted as a single signal.Hence, there
are no limitations on clock frequency or distance arising from data skew.

+ To accommodate a large number of devices that can be added or removed at any time, the USB
has the tree structure. Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O device. At the root of the tree, a root hub
connects the entire tree to the host computer.

+ The tree structure enables many devices to be connected while using only simple point-to-point
serial links.

+ FEach hub has a number of ports where devices may be connected, including other hubs.

+ In normal operation, a hub copies a message that it receives from its upstream connection to all
its downstream ports. As a result, a message sent by the host computer is broadcast to all I/O
devices, but only the addressed device will respond to that message.

+ A message sent from an I/O device is sent only upstream towards the root of the tree and is not
seen by other devices. Hence, USB enables the host to communicate with the I/O devices, but it
does not enable these devices to communicate with each other.

Host Computer

7s) 0 Yo o

device device device device

Yo /o

device device

SR
4,9 §§3 A(

L %
&

1 §
USB Protocols: NN g
+ All information transfelgvéﬁ%kler \L\%\i\%ﬁ organized in packets, where a packet consists of one
or more bytes of infqn‘%‘%@@“k
+ The information t@gfe SON th RSB can be divided into two broad categories: control and
data. < Control pacig§gperform ﬁ(@‘h tasks as addressing a device to initiate data transfer,
acknowledging thaﬁigi §haveBeen received correctly, or indicating an error. Data packets carry
informati i ivenato a device. For example, input and output data are transferred
inside data pag
"3{&‘“

Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.
Parallel Processors: Introduction to parallel processors, Concurrent access to memory and cache
coherency.

Basic concepts of pipelining:

Performance of a computer can be increased by increasing the performance of the CPU.

This can be done by executing more than one task at a time. This procedure is referred to as pipelining.
The concept of pipelining is to allow the processing of a new task even though the processing of
previous task has not ended. S

Pipelining is a technique of decomposing a sequential process into suboperations, WRa each subprocess
being executed in a special dedicated segment that operates concurrently wit} 1 other

pipeline can be visualized as a collection of processing segments through véilcﬁ ‘&ary in

flows. Each segment performs partial processmg dictated by the way the tagis pa oned’ The result
obtained from the computation in each segment is transferred to the gxt se?&n fie pipeline. The
final result is obtained after the data have passed through all segments e

Consider the following operation: Result=(A+B)*C ‘\3{‘1‘— Yf“"
First the A and B values are Fetched which is nothing but a “Fetc eration”.
The result of the Fetch operations is given as input to the Addltlon opisgation, which is an Arithmetic
operation. ’,,M S
The result of the Arithmetic operation is agam Ven torl D@:a operand C which is fetched from the
memory and using another arithmetic operatlon c}m uilphcatlon in this scenario is executed.
Finally the Result is again stored in the “R,@S’&i{” Vﬁf@k @s
wi w‘“
In this process we are using up-to 5 pi hnes whlch are
Fetch Operation (A), Fetch Opera on(g\
Addition of (A & B), Fetch Opﬁ’atlon(L_&:{éf“

Multiplication of ((A+B), C) i\ “3‘&»«
Load ((A+B)*C) eSS {:
2”33\ SR

FPipelining

ALt e

.

Now consider the case where a k-segment pipeline with a clock cycle time t, is used to execute n tasks.
The first task T1 requires a time equal to k t, to complete its operation since there are k segments in the
pipe. The remaining n - 1 tasks emerge from the pipe at the rate of one task per clock cycle and they will
be completed after a time equal to (n - 1)t, . Therefore, to complete

n tasks using a k-segment pipeline requires k + (n - 1) clock cycles. For example, the diagram of Fig.
shows four segments and six tasks.

The time required to complete all the operations is 4 + (6 - 1) =9 clock cycles, as indicated in the
diagram.

TABLE 9-1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse

Number R1 R3 RS

Ay —

Az —

A; AI *Bl + C]
A.; A;*Bz + Cz
As As*B; + (s
Ag As*Bs + Gy
A, As* Bs + Cs
—_ Ag*Bs + Cs
— AT*B'; + C'}'

(=T L B NV S N FS R o

i{i?\\\‘?

£y

Throughput and Speedup fs«@&“ &
Parallel processmg 1s a%\rm ug@ }e a large class of techniques that are used to provide

simultaneous data-processiig RGN urpose of inaeasing the computational speed of a computer
system. The purpose of pggglel processigg is to speed up the computer processing capability and
increase its throughput. % \ %“%i““&

Throughput: Is thg.amountof Seessing that can be accomplished during a given interval of time. The
amount of hardwﬁ%%%?%wnﬁ parallel processing and with it, the cost of the system increases.
However, technologics dev dpments have reduced hardware costs to the point where parallel
processmg\\ lgrvuques a‘?@;—zsconomlcally feasible.

Speedup oﬁm“p ¢ processing: The speedup of a pipeline processing over an equivalent nonpipeline
processing 1§\\g§ﬁne y the ratio
\

S =Tseq/ Tpipe =n*m / (m+n -1)

e

¢

the maximum speedup, also called ideal speedup, of a pipeline processor with m stages over an
equivalent nonpipelined processor is m. In other words, the ideal speedup is equal to the number of
pipeline stages. That is, when n is very large, a pipelined processor can produce output approximately m
times faster than a nonpipelined processor. When n is small, the speedup decreases.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different
types.

Hazards
The first hazard is called a structural hazard. It means that the hardware cannot support the
combination of instructions that we want to execute in the same clock cycle. A structural hazard in the
laundry room would occur if we used a washer dryer combination instead of a separate washer and
dryer, or if our roommate was busy doing something else and wouldn’t put clothes away. Our carefully
scheduled pipeline plans would then be foiled.

As we said above, the MIPS instruction set was designed to be pipelined, making it fairly easy
for designers to avoid structural hazards when designing a pipeline. Suppose, however, that we had a
single memory instead of two memories. If the pipeline in Figure 4.27 had a fourth instruction, we
would see that in the same clock cycle the fi rst instruction is accessing data from memory while the
fourth instruction is fetching an instruction from that same memory. Without two memories, our pipeline
could have a structural hazard.

.
Data Hazards o

&

&

Data hazards occur when the pipeline must be stalled because one step must %mr anotBer to

i gf%* Oné possible
strategy is to run down to your room and search through your clothegy ¥gee ifyou can find the
match. Obviously, while you are doing the search, loads must wait that\ve compiefed drying and are
ready to fold as well as those that have finished washing and agg
In a pipeline, data hazards arise from the dependence of one IS
the pipeline (a relationship that does not really exist when doing 1a g_ry). For example, suppose we
have an add instruction followed immediately by a subtract instructior@hat uses the sum ($s0):
add $s0, $t0, $t1 s N
sub $t2, $s0, $t3 ~ N

200 400 600 800 1000

Time

add $s0, $10, $t1 SEX

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to
L WERS
L’:&’%{‘;& %&%\%

iﬁ‘\@%‘l\“’ “%{%‘éf‘”
X e . . .
Wit M@Uon, a data hazard could severely stall the pipeline. The add instruction doesn’t

write its resulitintil the fifth stage, meaning that we would have to waste three clock cycles in the
pipeline.Althoggh we could try to rely on compilers to remove all such hazards, the results would not be
satisfactory. T Rse dependences happen just too oft en and the delay is just too long to expect the
compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for the instruction to
complete before trying to resolve the data hazard. For the code sequence above, as soon as the ALU
creates the sum for the add, we can supply it as an input for the subtract. Adding extra hardware to
retrieve the missing item early from the internal resources is called forwarding or bypassing.

In this graphical representation of events, forwarding paths are valid only if the destination stage
is later in time than the source stage. For example, there cannot be a valid forwarding path from the
output of the memory access stage in the first instruction to the input of the execution stage of the
following, since that would mean going backward in time.

Program
execution _ 600 800
order Time
(in instructions)

add $s0, $t0, $t1

sub $t2, $s0, $t3

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path

It cannot prevent all pipeline stalls, however. For example, suppose #i&fg ¢ inst
load of $s0 instead of an add. As we can imagine from looking at Figure 4 , the'ggs
available only affer the fourth stage of the first instruction in the depgndenc % hich '} too late for the
input of the third stage of sub. Hence, even with forwarding, we wogRighave t JLLQﬁe stage for a load-

use data hazard, as Figure 4.30 shows. This figure shows an importantygeline concept, officially
called a pipeline stall, but oft en given the nickname bubble. &@ shall see s elsewhere in the

pipeline. i, H
L_

Control Hazards
The third type of hazard is called a control hazand ar1s1ng fp\&n the need to make a decision based on
the results of one instruction while others are ¢ utlng&«ﬁupgse our laundry crew was given the happy

task of cleaning the uniforms of a football team how §lthy the laundry is, we need to determine
whether the detergent and water tempera,,aire séttlng jg‘i:t is strong enough to get the uniforms clean
but not so strong that the uniforms wea&out sooner. In laundry pipeline, we have to wait until aft er
the second stage to examine the drz\(unggrm to see g we need to change the washer setup or not. What
to do? SN Y

Here is the first of two solutiogs to congrol s in the laundry room and its computer equivalent.
Stall: Just operate sequen}ifll}m%t batch is dry and then repeat until you have the right
formula. N

This conservative option c&

S f,}"

“‘“‘“:T““m

Parallel Processors
Introduction to parallel processors:

Parallel processing is a term used to denote a large class of techniques that are used to provide
simultaneous data-processing tasks for the purpose of in a easing the computational speed of a computer
system. Instead of processing each instruction sequentially as in a conventional computer, a parallel
processing system is able to perform concurrent data processing to achieve faster execution time.

The purpose of parallel processing is to speed up the computer processing capability and increase
its throughput, that is, the amount of processing that can be accomplished during a given interval of
time. The amount of hardware increases with parallel processing and with it, the cost of the system
increases. However, technological developments have reduced hardware costs to the point where
parallel processing techniques a.re economically feasible.

Parallel processing can be viewed from various levels of complexity. At theowest level, we
distinguish between parallel and serial operations by the type of registers used. Shiff Ngisters operate in
serial fashion one bit at a time, while registers with parallel load operate wi bqal%he bit
simultaneously. &

Parallel processing at a higher level of complexity can be achieved B aV1n mu1t1p11c1ty of
functional units that perform identical or different operations simulta A\ allelgprocessing is
established by distributing the data among the multiple functional AR B, the arithmetic,
logic, and shift operations can be separated into three units an%e operan dlverted to each unit under
the supervision of a control unit.

Flgure 9-1 shows one possible way of separating the exec 1 unit mto eight functional units
operating in parallel. The operands in the registers are apphed to one he units depending on the
operation specified by the instruction associated wu‘ﬁ“ﬂle ope s. The operation performed in each
functional unit is indicated in each block of the gagrarfthhé&adder and integer multiplier perform the
arithmetic operations with integer numbers. W"iffi“:; & g

,«a\w\ "‘ig& L&

Figure 9-1 Procesor with multiple functional units.

e

Floating—paing
Add-sublract

Flearing—poin
rmiulliply

Floating-paint
divide

There are a variety of ways that parallel processing can be classified. It can be considered from
the internal organization of the processors, from the interconnection structure between processors, or
from the flow of information through the system. One classification introduced by M. J. Flynn considers
the organization of a computer system by the number of instructions and data items that are manipulated
simultaneously. The normal operation of a computer is to fetch instructions from memory and execute
them in the processor.

The sequence of instructions read from memory constitutes an instruction stream . The operations
performed on the data in the processor constitutes a data stream . Parallel processing may occur in the
instruction stream, in the data stream, or in both.

Flynn's classification divides computers into four major groups as follows:
Single instruction stream, single data stream (SISD)

Single instruction stream, multiple data stream (SIMD)

Multiple instruction stream, single data stream (MISD)

Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containi con tr “Enht a processor unit,
and a memory unit. Instructions are executed sequentlally and or may not have internal
parallel processing capabilities. Parallel processing in this cast Ty be achle~ &d by means of multiple
functional units or by pipeline processing. E N

SIMD represents an organization that includes many processﬁ@umts under the supervision of a
common control unit. All processors receive the same'mstruct $h from the control unit but operate on
different items of data. The shared memory unlggnust C\B;Qg‘dltalﬁ multlple modules so that it can
communicate with all the processors s1mu1tan66% &

MISD structure is only of theoreti /gxaﬁhJ;ere??’g{{?g{lce 7 practlcal system has been constructed
using this organization. \w‘”

MIMD organization refers to a ggmputer sy%ten‘l capable of processing several programs at the
same time. Most multiprocessorg&m ,omputgg?systems can be classified in this category.

£ 5 N
W\m“\,

Concurrent access to meiiy ry and cach% coherency:
' ¢’§ its ability to reduce the average access time in uniprocessors.
ache during a read operation, the main memory is not involved in
\v ite, there are two commonly used procedures to update memory.
Y wrlte -through policy, both cache and main memory are updated with

that it can ba cogi‘ St into main memory.

In a shdred mémory multiprocessor system, all the processors share a common memory. In
addition, each Rpecessor may have a local memory, part or all of which may be a cache. The compelling
reason for havihg separate caches for each processor is to reduce the average access time in each
processor. The same information may reside in a number of copies in some caches and main memory.
To ensure the ability of the system to execute memory operations correctly, the multiple copies must be
kept identical.

This requirement imposes a cache coherence problem. A memory scheme is coherent if the value
returned on a load instruction is always the value given by the latest store instruction with the same
address. Without a proper solution to the cache coherence problem, caching cannot be used in bus-
oriented multiprocessors with two or more processors.

Conditions for Incoherence

Cache coherence problems exist in multiprocessors with private caches because of the need to share
writable data. Read-only data can safely be replicated without cache coherence enforcement
mechanisms.

To illustrate the problem, consider the three-processor configuration with private caches shown in Fig.
13-12. Sometime during the operation an element X from main memory is loaded into the three
processors, P1, P2, and P3. As a consequence, it is also copied into the private caches of the three
processors. For simplicity, we assume that X contains the value of 52. The load on X to the three
processors results in consistent copies in the caches and main memory. If one of the processors performs
a store to X, the copies of X in the caches become inconsistent. A load by the other processors will not
return the latest value. Depending on the memory update policy used in the cache, the main memory
may also be inconsistent with respect to the cache.

Main memaory

Processors

R
This is shown in Fig. 13-13. A store to X (‘g% he vaie of 12&) into the cache of processor P1 updates
memory to the new value in a write- throgf'gh pohcy ;\t:é through policy maintains consistency
between memory and the orlglnatlng c he but the pth,\two caches are inconsistent since they still
hold the old value. In a write- bac main meghory is not updated at the time of the store. The
copies in the other two caches qﬁ Mr&@’e inconsistent. Memory is updated eventually when

the modified data in the cache §re copigg.bac Thto memory.

Figure 13-13 Cache configuration after a store to X by processor P,

X=120 Main memory

5] (=]

{a) With write-through cache policy

(b With write-back cache policy

Another configuration that may cause consistency problems is a direct memo

policy. VO-based memory incoherence can be overcome by making & 3 ,iq%}gant in the cache
coherent solution that is adopted in the system. e

